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Abstract
In recent work we presented a new approach to the analysis of weighted
networks, by providing a straightforward generalization of any network
measure defined on unweighted networks. This approach is based on the
translation of a weighted network into an ensemble of edges, and is particularly
suited to the analysis of fully connected weighted networks. Here we apply
our method to several such networks including distance matrices, and show
that the clustering coefficient, constructed by using the ensemble approach,
provides meaningful insights into the systems studied. In the particular case of
two datasets from microarray experiments the clustering coefficient identifies a
number of biologically significant genes, outperforming existing identification
approaches.

PACS numbers: 89.75.−k, 87.16.Yc, 02.50.−r

The rise of information technology and the Internet, as well as the more recent advent of high-
throughput technologies in biology make it easier to obtain large amounts of data on complex
networks. Increasingly this also includes data on weighted complex networks, which now
appear in many different guises: transport and traffic [1, 2], trade or communication networks,
financial networks [3], and collaboration networks [4], to name a few. In biology, genetic
regulation and transcription [5] and protein interaction [6] have been studied in this context.
However, the extraction of meaningful physical or biological information from these networks
is a difficult task. For unweighted complex networks, with binary adjacency matrices, a set of
local and global measures on the network has been defined [7], including the degree of a node,
its average nearest-neighbour degree [8] and its clustering coefficient [9]. Defining these

1751-8113/08/224011+06$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/22/224011
http://stacks.iop.org/ JPhysA/41/224011


J. Phys. A: Math. Theor. 41 (2008) 224011 S E Ahnert et al

measures for weighted networks is more difficult and has been the subject of recent research
[2, 5, 10, 11]. A review of definitions of weighted clustering coefficients can be found in [12].

In a recent paper [13], we introduced a new approach to this problem which allows
for a straightforward generalization of any measure defined on an unweighted network to
weighted networks. Here we apply the clustering coefficient defined in this way to distance
matrices, which are fully connected weighted networks. The distance matrices are generated
from microarray expression series, so that closely related series (by some chosen similarity
measure) will be separated by a short distance, which in the network picture translates into an
edge with a large weight.

The basis of our approach is to find a continuous bijective map M : R → [0, 1] from the
real numbers to the interval between 0 and 1, which maps the weights wij ∈ R to a quantity
pij ∈ [0, 1]. A simple example of such a map is a linear normalization of the weights:

pij = wij − min(wij )

max(wij ) − min(wij )
. (1)

This simple normalization maps min(wij ) to zero. While this is often acceptable in the case
of a distance matrix, one should make a more sophisticated choice of map if there are many
edges with weight min(wij ). Similarly, if the network has negative weights as well as positive
ones, the normalized modulus of the original weights might be a more appropriate choice. A
more detailed discussion on the topic of map choice can be found in [13].

The ideas we introduced in [13] are based on an interpretation of the matrix P with entries
{pij } as a matrix of probabilities. These probabilities can be interpreted as an ensemble of
edges, or more concisely, an ensemble network. Thus, just as any binary square matrix can be
understood as an unweighted network and any real square matrix corresponds to a weighted
network, any square matrix with entries between 0 and 1 corresponds to an ensemble network.
If we sample each edge of the ensemble network exactly once, we obtain an unweighted
network which we term a realization of the ensemble network. In particular, pij is the
probability that the edge between nodes i and j exists. These concepts are valid both for
directed networks, with any pij ∈ [0, 1], and undirected networks, for which pij = pji , so
that the matrix is symmetric. In a real-world weighted network, the original weights can
represent almost any physical quantity, such as the strength of a collaboration between two
scientists, or the number of passengers travelling between two countries. By mapping these
weights to probabilities we rid ourselves of the interpretational burden of these weights, whilst
retaining all the topological information they contain. It should be noted that in many cases
the interpretation of weights as probabilities also makes intuitive physical sense. Whenever
the weights in a network represent a magnitude of flow, this can be interpreted directly in terms
of the probability that a transfer occurs during a given unit of time. Examples include traffic
and transport networks as well as communication networks, where we have units (passengers,
money, signals) which form an edge, through their transfer, with a probability proportional to
the flow rate.

All measures on unweighted networks can be written as functions of the entries aij of an
adjacency matrix A. In fact, generally they can be written as a polynomial of these entries, or
a simple ratio of such polynomials. Note that, for an unweighted network, aij = am

ij for all
positive integers m > 0, so that these polynomials are of first order only. Consider a general
first-order polynomial, which can be written fully expanded as:

f (A) =
2N2

∑

q=0

Cq

N∏

j,k=0

a
b(q)jk

jk
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where N is the number of nodes, the Cq are real coefficients and the b(q)jk are a set of boolean
matrices specifying which adjacency matrix entries appear in each term of the polynomial. The
probability Pq that

∏N
j,k=0 a

b(q)jk

jk = 1 in a given realization A is simply Pq = ∏N
j,k=0 p

b(q)jk

jk .
Thus, due to the linearity of the polynomial, the average f̄ (P) of f over the ensemble network
realizations is

f̄ (P) =
2N2

∑

q=0

Cq

N∏

j,k=0

p
b(q)jk

jk = f (P). (2)

This means that the value of a polynomial function f of the entries of an unweighted network
A, averaged over the realizations of a given ensemble network P is equal to the value of the
polynomial of the ensemble network adjacency matrix itself.

The degree ki of a given node i in an unweighted network with adjacency matrix elements
aij is the number of its neighbours, and is written as ki = ∑

j aij . In a weighted network with
elements wij the corresponding quantity has been termed the strength of the node i, denoted
as si , which consists of the sum of the weights: si = ∑

j wij . In an ensemble network, the
corresponding sum over the edges attached to a particular node gives the average degree of
node i across realizations, denoted as k̄i and given by k̄i = ∑

j pij .
It is important to note that while the strength of a node in a weighted network may have

meaning in the context of the network, k̄i has a universal meaning, regardless of the original
meaning of the weights.

As a more complex example, consider the clustering coefficient of a node i, which has
been defined [9] as:

ci =
∑

j,k aij ajkaik

k(k − 1)/2
=

∑
j,k aij ajkaik∑

j,k aij aik

(3)

where k �= j �= i �= k in the sums. This corresponds to the number of triangles in the network
which include node i, divided by the number of pairs of bonds including i, which represent
potential triangles. Using the ensemble approach with its normalized weights this generalizes
straightforwardly to:

ce
i =

∑
j,k pijpjkpik∑

j,k pijpik

(4)

which can be read as the average number of triangles divided by the average number of bond
pairs. In modified form, this clustering coefficient has appeared in the very recent literature
[5] but without connection to a general approach to the construction of weighted network
measures based on a general mapping from weights to probabilities. Note that ce

i is not the
average of ci over the ensemble. For a detailed discussion of this subtlety, see [13].

All measures constructed with the ensemble approach are only functions of the normalized
weights pij , not of the elements of an unweighted adjacency matrix aij or of the degree k.
This distinguishes the ensemble measures from measures proposed for weighted networks in
the literature, such as the weighted clustering coefficient cw

i :

cw
i = 1

si(ki − 1)

∑

j,k

(wij + wik)

2
aij aikajk (5)

and the weighted average nearest-neighbour degree kw
nn,i :

kw
nn,i = 1

si

N∑

j=1

aijwij kj . (6)
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Figure 1. Example of the advantages of the ensemble clustering coefficient, as shown in our earlier
work [13]. The network of air travel passengers within the 25 member states of the EU[15] is
almost fully connected. LEFT: unweighted clustering coefficient versus degree. All 25 data points
are projected onto 7 locations, as a result of the information loss due to discarding the weights, and
because the network is almost fully connected. CENTER: clustering coefficient as proposed in the
literature [2] versus strength. This ‘mixed’ clustering coefficient is a function of unweighted and
weighted quantities. No clear relationship is evident, again because the network is almost fully
connected. RIGHT: ensemble clustering coefficient versus ensemble degree. Unlike the other two
approaches, those derived using the ensemble quantities exhibit a clear negative linear relationship.
The lines are lines of best fit. Note that the absolute scale of the ensemble clustering coefficient ce

i

depends on the choice of the map M from weights to probabilities, which makes the relative values
of ce

i more important than the absolute ones.

Both are defined in [2], and equation (5) is the most frequently cited definition of a
weighted clustering coefficient in the literature. Due to their construction, these measures
cannot be used for the analysis of fully connected weighted networks, as kw

nn,i = 1 and cw
i = 1

for all nodes i in such networks. Fully connected weighted networks form an important class
of complex networks, for example in the form of the (virtually fully-connected) EU air travel
network which we analyze in [13] (see figure 1). Furthermore, any matrix of similarities
or distances between a number of objects—such as for instance microarray data series in
biological experiments—can be treated as a fully connected weighted network, and thus can be
analyzed using the ensemble approach, but not with approaches such as equations (5) and (6),
which are ‘mixed’ in the sense that they make use of both the unweighted and weighted
adjacency matrix entries.

Note that the absolute values of the ensemble clustering coefficient have limited meaning,
as they are dependent on the map M. It is their relative values which carry the information,
and these are largely independent of the choice of map M, as long as it is bijective.

Microarrays are one of the most successful high-throughput technologies in biology,
providing a snapshot of gene expression levels for all of the thousands of genes in the genome
of a given organism simultaneously. A microarray consists of a large number of microscopic
spots on a slide (typically made of glass or silicon), which each contain copies of a different
short DNA sequence (or oligonucleotide) unique to a particular gene. Furthermore, the
sequence copies in each spot are attached to a fluorescent marker. If a given gene is expressed
in the tissue sample to be examined, many copies of this gene will be present in the form of
messenger RNA (mRNA), which in turn will bind to the sequences on the microarray, causing
fluorescence of the spot. The fluorescence of the array of spots is captured by a camera and
then read out using a computer.

A series of microarray measurements gives an expression profile for each gene over space
or time, telling us where and when a given gene is ‘switched on’. These sets of data series
are subjected to detailed analysis, and distance matrices between these series (often calculated
using Pearson correlation) typically form an integral part of such an analysis.

Here we calculate the ensemble clustering coefficient for distance matrices derived from
two entirely different microarray datasets. The first dataset consists of microarray data from
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Figure 2. Receiver-operating characteristic (ROC) diagrams for the yeast cell cycle (LEFT) and
somitogenesis (RIGHT) datasets, showing the positions of known biologically significant genes
in a ranking of 200 genes in the rankings generated (a) using the ensemble clustering coefficient
(solid) and (b) using the original pattern-finding approach (dotted) which was used to select the
200 genes in the first place. In both cases the ensemble clustering coefficient moves biologically
significant genes to the top of the ranking.

an experiment studying the formation of vertebra (somitogenesis) in mice [16], from which
a list of 200 genes was compiled using an existing pattern detection approach [17]. This
approach is designed to detect biologically significant genes by finding expression profiles
which deviate from randomness. The second dataset is the well-known dataset of yeast cell
cycle microarray experiments in yeast [18]. Here too the 200 strongest patterns were selected
using the same approach.

It should be noted that microarray datasets are notoriously noisy and pre-filtering of
data based on purely mathematical measures is essential and in fact present in almost any
microarray study. Our selection method based on pattern detection is mathematically rigorous
and makes no prior assumptions about the nature of the pattern.

In each of the two datasets the 200 genes are ranked by the amount of pattern they
contain (and thus by their supposed biological significance). Yet the fully connected weighted
network which corresponds to a distance matrix between these 200 genes contains none of this
information. Therefore, when we calculate the ensemble clustering coefficient for a distance
matrix of 200 genes, we can use the pattern-detection approach as a benchmark comparison
for the performance of the clustering coefficient in finding biologically significant genes.

For both the mouse somitogenesis and yeast cell cycle datasets we compare our predictions
to lists of known biologically significant genes. In the case of mouse somitogenesis these are
17 genes associated with the Wnt and Notch pathways, listed in [16], and in the case of yeast
cell cycle there are 65 genes which can be found in two lists of experimentally verified yeast
cell cycle genes [19, 20].

The distance measure chosen to generate the distance matrix is the algorithmic
compression of one expression series due to another [17]. As can be seen in figure 2,
the ranking generated by using the clustering coefficient clearly outperforms the pattern-
ranking for both datasets. In the case of the mouse somitogenesis dataset, 11 (64%) of the
17 genes known to play a role in somitogenesis are located in the top 13 places (top 6%) of
the ranking. Similarly, in the yeast cell cycle dataset, 31 (48%) of 65 known genes occupy
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places in the top 43 (top 21%). Compared to this, the conventional pattern-finding approach
fares less well, with 6 (35%) in the top 13 (somitogenesis) and 23 (35%) in the top 43 (yeast).
The conclusion is that in both datasets the ensemble clustering coefficient appears to move
biologically significant genes to the top of the ranking.

By transforming a weighted network into an ensemble network, any of the numerous
measures which have been defined for unweighted networks can be straightforwardly
generalized to weighted networks. As we have shown in this paper, our approach is
particularly suited for the analysis of distance matrices. We demonstrate this by calculating
the ensemble clustering coefficient for the distance matrices between microarray data series
which successfully identifies many known biologically significant genes. These results are
an indication that the application of complex networks methods to the rather separate field of
distance matrix analysis is likely to yield valuable insights.
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